1 Recursion Equations

1.1 Concepts

1. A first order linear recurrence equation is of the form $a_{n}=\alpha a_{n-1}+\beta$. The general solution to this is

$$
a_{n}=\alpha^{n} a_{0}+\beta \frac{\alpha^{n}-1}{\alpha-1}
$$

if $\alpha \neq 1$ and $a_{n}=a_{0}+n \beta$ otherwise.

1.2 Examples

2. Solve the recurrence relation $a_{n}=2 a_{n-1}+1$ with $a_{0}=0$.

Solution: This is a first order linear recurrence equation with $\alpha=2$ and $\beta=1$. The general solution is then $a_{n}=a_{0} 2^{n}+\frac{2^{n}-1}{2-1}=2^{n}-1$. A good thing to do now is to plug it in and verify that it is the solution. This gives

$$
2^{n}-1=2\left(2^{n-1}-1\right)+1=2 \cdot 2^{n-1}-2+1=2^{n}-1
$$

2 Differential Equations

2.1 Concepts

3. A problem of the form $y^{\prime}=f(t, y)$ and $y(0)=y_{0}$ is called an initial value problem (IVP). There is a theorem that tells us when a solution to this problem exists. It says that if f is continuous, then for every choice of y_{0}, the solution exists in a time interval $[0, T)$ for some $0<T \leq \infty$. But, the solution may not exist everywhere and it is not guaranteed to be unique.
To solve a linear first order differential equation, first bring y, y^{\prime} to one side and then divide to get the coefficient of y^{\prime} to be 1 so you have something of the form $y^{\prime}+P(x) y=$ $Q(x)$. Then, multiply the integrating factor $I(x)=e^{\int P(x) d x}$. We define it this way because then $I^{\prime}=I(x) P(x)$ (convince yourself of this). This gives $I(x) y^{\prime}+I(x) P(x) y=$
$I(x) Q(x)$. Then the left side is just $(I(x) y)^{\prime}=I(x) Q(x)$ and we can solve this by integrating then dividing by $I(x)$.
Another form of differential equation that has a nice solution is the case of separable equations. A differential equation is separable if we can write it as $y^{\prime}=f(y) g(t)$, a term only involving y s and constants with a term only involving t s and constants. To do this, we write $y^{\prime}=\frac{d y}{d t}$ and move all the t s to one side and the y s to the other to get $\frac{d y}{f(y)}=g(t) d t$. Now integrating gives us a solution. Often, we do not explicitly solve for y and leave them in an implicit form.

2.2 Examples

4. Find the general solution to $y^{\prime}-\frac{y}{x+1}=(x+1)^{2}$.

Solution: The integrating factor is $I(x)=e^{\int-\frac{1}{x+1} d x}=e^{-\ln (x+1)}=\frac{1}{x+1}$. We multiply through by this to get

$$
\frac{y^{\prime}}{x+1}-\frac{y}{(x+1)^{2}}=\left(\frac{y}{x+1}\right)^{\prime}=x+1
$$

Now, we integrate to get

$$
\frac{y}{x+1}=\frac{(x+1)^{2}}{2}+C
$$

and hence $y=\frac{(x+1)^{3}}{2}+C(x+1)$.
5. Find the solution to $y^{\prime} e^{y}=2 t+1$ with $y(1)=0$.

Solution: We can rewrite this as $y^{\prime}=(2 t+1) e^{-y}$ and see this that is a separable equation because it is something involving t multiplied by something involving y. Now we can write this is $\frac{d y}{d t} e^{y}=2 t+1$ and multiplying by $d t$ gives

$$
e^{y} d y=(2 t+1) d t
$$

and integrating gives $e^{y}=t^{2}+t+C$ and this is the implicit solution. Now to find C, we plug in the initial condition to get $1=e^{0}=1^{2}+1+C=2+C$. Hence $C=-1$ and the solution is $e^{y}=t^{2}+t-1$.

2.3 Problems

6. True FALSE We cannot use the method of separable equations on $y^{\prime}=e^{y+t}$ because it involves a sum of y and t.

Solution: We actually have $e^{y+t}=e^{y} e^{t}$ and hence it is the product of functions involving t and y and hence we can use separable equations.
7. True FALSE If we can use the method of separable equations, we must be able to write $y^{\prime}=(a y+b) f(t)$ for a linear polynomial in terms of y.

Solution: We do not need the function in y to be linear.
8. True FALSE The equation $y^{\prime}=y+t$ is not separable and so we do not know how to solve it.

Solution: It is indeed not separable but we can write it as $y^{\prime}-y=t$ which is a form that we know how to solve with integrating factors.
9. Find the solution of $y^{\prime}+\frac{y}{x}=e^{x} / x$ with $y(1)=0$.

Solution: The integrating factor is $e^{\int 1 / x d x}=e^{\ln x}=x$ and multiplying through gives us $x y^{\prime}+y=(x y)^{\prime}=e^{x}$. Now integrating gives $x y=e^{x}+C$ and hence $y=\frac{e^{x}}{x}+\frac{C}{x}$. Now solving for the initial condition gives us $0=\frac{e^{1}}{1}+\frac{C}{1}=e+C$. Hence $C=-e$ so $y=\frac{e^{x}}{x}-\frac{e}{x}$.
10. Find the solution of $y^{\prime}+2 x y=2 x$ with $y(0)=0$.

Solution: The integrating factor is $e^{\int 2 x d x}=e^{x^{2}}$. Multiplying by this gives

$$
e^{x^{2}} y^{\prime}+2 x e^{x^{2}} y=\left(e^{x^{2}} y\right)^{\prime}=2 x e^{x^{2}} .
$$

Now integrating gives $e^{x^{2}} y=e^{x^{2}}+C$ and hence $y=1+C e^{-x^{2}}$. Plugging in the initial condition gives us that $0=1+C e^{-0}=1+C$ and hence $C=-1$ so the solution is $y=1-e^{-x^{2}}$.
11. Find the solution to $r^{\prime}=r^{2} / t$ with $r(1)=1$.

Solution: Split it to get $\frac{d r}{r^{2}}=\frac{d t}{t}$ and now integrating gives $-1 / r=\ln t+C$ or $r=\frac{-1}{\ln t+C}$. Now we plug in the initial condition of $r(1)=1$ and since $\ln 1=0$, we have that $1=\frac{-1}{0+C}=\frac{-1}{C}$. Hence $C=-1$ and so the solution is $r(t)=\frac{-1}{-1+\ln t}$.
12. Find the general solution of $y^{\prime}=2 t \sec y$.

Solution: Separating by dividing by $\sec y$ gives us $d y / \sec (y)=\cos (y) d y=2 t d t$. Now integrating gives $\sin (y)=t^{2}+C$ which is the general solution.

2.4 Extra Problems

13. Find the solution to $\frac{d y}{d t}=3 t^{2} y^{3}+e^{t} y^{3}$ with $y(0)=-1$.

Solution: We factor the right side as $y^{3}\left(t^{2}+e^{t}\right)$ so we have that

$$
\frac{d y}{y^{3}}=\left(3 t^{2}+e^{t}\right) d t .
$$

Taking the integral of both sides gives

$$
\frac{-1}{2 y^{2}}=t^{3}+e^{t}+C \Longrightarrow y^{2}=\frac{-1}{2 t^{3}+2 e^{t}+C}
$$

Now plugging in the initial condition that $y(0)=-1$, we have that $1=\frac{-1}{0+2 e^{0}+C}$ so $2+C=-1$ and $C=-3$. Therefore, we have

$$
y^{2}=\frac{-1}{2 t^{3}+2 e^{t}-3}
$$

If we want this in terms of y only, then we have to choose which sign of y to take. We are given that $y(0)=-1$, so we take the negative square root and

$$
y=-\sqrt{\frac{-1}{2 t^{3}+2 e^{t}-3}} .
$$

14. Find the solution to $\frac{d y}{d x}=6 x y^{2}$ with $y(1)=1 / 4$.

Solution: Splitting gives

$$
\frac{d y}{y^{2}}=6 x d x \Longrightarrow \frac{-1}{y}=3 x^{2}+C \Longrightarrow y=\frac{-1}{3 x^{2}+C}
$$

Plugging in $y(1)=\frac{1}{4}$ gives $\frac{1}{4}=\frac{-1}{3+C}$ so $3+C=-4$ and $C=-7$. Therefore, we have

$$
y=\frac{-1}{3 x^{2}-7} .
$$

15. Find the solution to $\frac{d y}{d x}=\frac{3 x^{2}+2 x+1}{2 y+1}$ with $y(0)=1$.

Solution: Split and get

$$
(2 y+1) d y=\left(3 x^{2}+2 x+1\right) d x \Longrightarrow y^{2}+y=x^{3}+x^{2}+x+C .
$$

We cannot explicitly solve for y easily so we have to leave it in this form. But, we can solve for c to get $y(0)=1$ so $1+1=C=2$. Therefore, the implicit solution is

$$
y^{2}+y=x^{3}+x^{2}+x+2 .
$$

16. Find the solution to $\frac{d y}{d t}=2 y+3$ with $y(0)=0$.

Solution: Separate to get

$$
\frac{d y}{2 y+3}=d t \Longrightarrow \frac{\ln (2 y+3)}{2}=t+C
$$

so $2 y+3=e^{2 t+C}$. We can bring the constant down as multiplying by a constant so $e^{2 t+C}=e^{2 t} \cdot e^{C}=C e^{2 t}$ and so

$$
y=\frac{C e^{2 t}-3}{2} .
$$

Taking $y(0)=0$ gives $0=(C-3) / 2$ so $C=3$ and we get

$$
y=\frac{3 e^{2 t}-3}{2}
$$

17. Find the solution to $\frac{d x}{d y}=e^{x-y}$ with $x(0)=0$.

Solution: We can split e^{x-y} as $e^{x} \cdot e^{-y}$ and now splitting gives

$$
e^{-x} d x=e^{-y} d y \Longrightarrow-e^{-x}=-e^{-y}+C
$$

so $e^{-x}=e^{-y}+C$ and $-x=\ln \left(e^{-y}+C\right)$ and $x=-\ln \left(e^{-y}+C\right)$. Plugging in $x(0)=0$ gives $0=-\ln (1+C)$ so $1+C=0$ and $C=-1$. So

$$
x=-\ln \left(e^{-y}-1\right)
$$

